login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients T(n, k) (n > 0, k < n) in expansion of sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)), read by rows.
0

%I #11 Jul 24 2013 12:52:24

%S 1,1,1,3,25,3,17,329,329,17,155,5325,14301,5325,155,2073,110605,

%T 563013,563013,110605,2073,38227,2918825,23904881,45956625,23904881,

%U 2918825,38227,929569,96075665,1150348017,3600524785,3600524785,1150348017,96075665,929569

%N Triangle of coefficients T(n, k) (n > 0, k < n) in expansion of sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)), read by rows.

%H Michael Hardy, <a href="http://mathoverflow.net/questions/116229/">A "known" tangent half-angle formula?</a>.

%F A024235(n) = Sum_{k = 0..n-1} T(n, k).

%F A110501(n) = T(n, 0).

%F E.g.f.: sin(u*x) * sin(v*x) / (cos(u*x) + cos(v*x)) = Sum_{n>0, k<n} x^(2*n) / (2*n)! * u^(2*k + 1) * v^(2*n - 2*k -1) * T(n, k).

%e 1; 1, 1; 3, 25, 3; 17, 329, 329, 17; ...

%o (PARI) {T(n, k) = local(u = 'u, v = 'v, A); if( n<0 || k>=n, 0, n = 2*n; k = 2*k + 1; A = x * O(x^n); n! * polcoeff( polcoeff( polcoeff( sin( u*x + A) * sin( v*x + A) / (cos( u*x + A) + cos( v*x + A)), n, x), k, u), n - k, v))}

%Y Cf. A024235, A110501.

%K nonn,tabl

%O 1,4

%A _Michael Somos_, Jul 23 2013