login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224769 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1) and S=(0,1). 4

%I

%S 1,1,2,7,33,184,1142,7629,53750,394157,2981546,23117242,182867360,

%T 1470714606,11993628444,98967634147,824958769631,6937180941468,

%U 58785077008641,501520244718945,4304433733010962,37142428443486254,322042675618484973,2804409601249038670

%N Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1) and S=(0,1).

%H Alois P. Heinz, <a href="/A224769/b224769.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 3/4*(71 + 8*sqrt(2))^(1/3) + 51/(4*(71 + 8*sqrt(2))^(1/3)) + 13/4 = 9.4435356015932520820011..., c = 0.00814413508604516738631686716788556507884786... . - _Vaclav Kotesovec_, Sep 07 2014

%e a(2) = 2: UDSS, UU.

%e a(3) = 7: UDSDSSS, UDUSS, UDSSDSS, UUDSS, UDSUS, UDSSU, UUU.

%p b:= proc(x, y) option remember; `if`(y>x, 0, `if`(x=0, 1,

%p `if`(y>0, b(x, y-1)+b(x-1, y-1), 0)+b(x-1, y+1)))

%p end:

%p a:= n-> b(n, n):

%p seq(a(n), n=0..30);

%t b[x_, y_] := b[x, y] = If[y > x, 0, If[x == 0, 1, If[y > 0, b[x, y - 1] + b[x - 1, y - 1], 0] + b[x - 1, y + 1]]];

%t a[n_] := b[n, n];

%t a /@ Range[0, 30] (* _Jean-Fran├žois Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)

%Y Cf. A198324 (paths to (n,0)), A225042 (with additional H-steps), A286425.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Apr 17 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 13:00 EDT 2021. Contains 343114 sequences. (Running on oeis4.)