login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224762
Define a sequence of rationals by S(1)=1; for n>=1, write S(1),...,S(n) as XY^k, Y nonempty, where the fractional exponent k is maximized, and set S(n+1)=k; sequence gives numerators of S(1), S(2), ...
4
1, 1, 2, 1, 3, 1, 3, 2, 6, 1, 5, 1, 3, 4, 1, 4, 3, 5, 8, 1, 6, 13, 1, 4, 5, 8, 9, 1, 6, 5, 6, 3, 16, 1, 7, 1, 3, 6, 8, 14, 1, 6, 5, 16, 1, 5, 4, 24, 1, 5, 3, 15, 1, 5, 3, 7, 1, 5, 3, 7, 2, 54, 1, 7, 31, 1, 4, 21, 1, 4, 5, 1, 4, 5, 2, 15, 25, 1, 7, 17, 1, 4, 11, 1, 4, 5, 5, 30, 1, 6, 25, 15, 17, 1, 6, 7, 1, 4, 15, 1, 4, 5, 19
OFFSET
1,3
COMMENTS
k is the "fractional curling number" of S(1),...,S(n). The infinite sequence S(1), S(2), ... is a fractional analog of Gijswijt's sequence A090822.
For the first 1000 terms, 1 <= S(n) <= 2. Is this always true?
The fractional curling number k of S = (S(1), S(2), ..., S(n)) is defined as follows. Write S = X Y Y ... Y Y' where X may be empty, Y is nonempty, there are say i copies of Y, and Y' is a prefix of Y. There may be many ways to do this. Choose the version in which the ratio k = (i|Y|+|Y'|)/|Y| is maximized; this k is the fractional curling number of S.
For example, if S = (S(1), ..., S(6)) = (1, 1, 2, 1, 3/2, 1), the best choice is to take X = 1,1,2, Y = 1,3/2, Y' = 1, giving k = (2+1)/2 = 3/2 = S(7).
LINKS
Allan Wilks, Table of n, a(n) for n = 1..10000 (terms 1..1000 from N. J. A. Sloane)
Allan Wilks, Table of n, S(n) for n = 1..10000 [The first 1000 terms were computed by N. J. A. Sloane]
EXAMPLE
The sequence S(1), S(2), ... begins 1, 1, 2, 1, 3/2, 1, 3/2, 2, 6/5, 1, 5/4, 1, 3/2, 4/3, 1, 4/3, 3/2, 5/4, 8/7, 1, 6/5, 13/12, 1, 4/3, 5/4, 8/7, 9/7, 1, 6/5, 5/4, 6/5, 3/2, 16/15, 1, 7/6, 1, 3/2, 6/5, 8/7, 14/13, 1, 6/5, 5/4, 16/13, 1, 5/4, 4/3, 24/23, 1, 5/4, 3/2, 15/14, 1, 5/4, 3/2, 7/4, ...
MAPLE
See link.
CROSSREFS
Cf. A224763 (denominators), A090822, A224765.
Sequence in context: A309786 A162912 A230070 * A039776 A048864 A379315
KEYWORD
nonn,frac
AUTHOR
Conference dinner party, Workshop on Challenges in Combinatorics on Words, Fields Institute, Toronto, Apr 22 2013, entered by N. J. A. Sloane
STATUS
approved