login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224670
Number of (n+1) X 3 0..2 matrices with each 2 X 2 subblock idempotent
1
25, 50, 76, 123, 191, 300, 470, 741, 1173, 1866, 2980, 4775, 7671, 12348, 19906, 32125, 51885, 83846, 135548, 219191, 354515, 573460, 927706, 1500873, 2428261, 3928790, 6356680, 10285071, 16641323, 26925936, 43566770, 70492185, 114058401
OFFSET
1,1
COMMENTS
Column 2 of A224676.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5).
Conjectures from Colin Barker, Feb 17 2018: (Start)
G.f.: x*(25 - 50*x + x^2 + 44*x^3 - 21*x^4) / ((1 - x)^3*(1 - x - x^2)).
a(n) = -2 + 2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n)) + 2*(1+n) + (1+n)*(2+n)/2.
(End)
EXAMPLE
Some solutions for n=3:
..1..0..2....0..0..0....1..1..1....1..0..0....1..0..0....0..0..0....1..0..0
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....1..1..1....0..0..0
CROSSREFS
Sequence in context: A031472 A045210 A169860 * A045195 A232438 A360017
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 14 2013
STATUS
approved