login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224590
Number of (n+7)X8 0..1 matrices with each 8X8 subblock idempotent
1
65108492, 1770078, 1089765, 951062, 891884, 877647, 861932, 884782, 877730, 938003, 1024137, 1155186, 1312331, 1585986, 1933893, 2408764, 3002302, 3788718, 4754615, 5977345, 7449166, 9332836, 11688827, 14683115, 18522156, 23570034
OFFSET
1,1
COMMENTS
Column 1 of A224597
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -3*a(n-2) +4*a(n-3) -5*a(n-4) +6*a(n-5) -6*a(n-6) +6*a(n-7) -4*a(n-8) +3*a(n-9) -2*a(n-11) +6*a(n-12) -8*a(n-13) +11*a(n-14) -12*a(n-15) +13*a(n-16) -13*a(n-17) +11*a(n-18) -10*a(n-19) +6*a(n-20) -5*a(n-21) +a(n-23) -5*a(n-24) +5*a(n-25) -7*a(n-26) +7*a(n-27) -7*a(n-28) +7*a(n-29) -5*a(n-30) +5*a(n-31) -3*a(n-32) +3*a(n-33) -a(n-34) +a(n-35) for n>54
EXAMPLE
Some solutions for n=4
..1..0..0..1..0..0..0..0....1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..1..0..1..0..0..1..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..1..1..0..0..1..1..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..1..1..0..0..1..1..0....0..0..0..0..1..0..0..0....0..1..0..1..0..0..1..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..1..0..1..0..0..1..0
..1..0..0..0..0..0..1..1....0..0..0..0..1..0..0..0....0..0..1..0..0..1..0..1
CROSSREFS
Sequence in context: A183671 A237339 A224589 * A224597 A204498 A103789
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 11 2013
STATUS
approved