login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.
2

%I #19 Aug 09 2024 01:53:30

%S 1,3,28,13,3,1,2,1,1,8,3,4,3,3,15,12,5,2,8,1,24,2,3,5,1,1,3,3,1,1,1,2,

%T 1,1,7,12,1,1,1,3,1,1,1,2,1,107,1,3,6,1,26,121,3,2,1,1,12,117,1,2,3,7,

%U 5,41,5,1,5,1,1,2,3,1,200,1,4,3,191,1,5,3,5

%N Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.

%C Continued fraction of the constant in A224578.

%H Paolo P. Lava, <a href="/A224579/b224579.txt">Table of n, a(n) for n = 0..999</a>

%p Digits:=200; a:=evalf(gamma,5000); evalf((a+sqrt(4+a^2))/2,1000);

%p numtheory[cfrac](%,200,'quotients') ;

%t ContinuedFraction[(EulerGamma+Sqrt[4+EulerGamma^2])/2, 100] (* _G. C. Greubel_, Aug 30 2018 *)

%o (PARI) default(realprecision, 100); contfrac((Euler + sqrt(4 + Euler^2))/2) \\ _G. C. Greubel_, Aug 30 2018

%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((EulerGamma(R) + Sqrt(4+EulerGamma(R)^2))/2); // _G. C. Greubel_, Aug 30 2018

%Y Cf. A001620, A188640, A224578 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _Paolo P. Lava_, Apr 11 2013

%E Offset changed by _Andrew Howroyd_, Aug 08 2024