login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X(n+2) 0..1 matrices with each 3X3 subblock idempotent
0

%I #4 Apr 10 2013 10:50:11

%S 50,94,180,286,540,992,1668,2852,4870,8086,13318,21860,35536,57364,

%T 92210,147516,234942,372868,589854,930262,1463134,2295546,3593192,

%U 5612308,8748560,13611938,21141762,32782810

%N Number of (n+2)X(n+2) 0..1 matrices with each 3X3 subblock idempotent

%C Diagonal of A224559

%F Empirical: a(n) = 6*a(n-1) -15*a(n-2) +23*a(n-3) -30*a(n-4) +36*a(n-5) -34*a(n-6) +27*a(n-7) -21*a(n-8) +13*a(n-9) -6*a(n-10) +3*a(n-11) -a(n-12) for n>14

%e Some solutions for n=3

%e ..1..0..0..0..0....1..1..0..0..0....1..0..0..0..0....1..0..0..0..0

%e ..1..0..0..0..0....0..0..0..0..0....0..0..0..0..1....1..0..0..0..1

%e ..1..0..0..0..0....0..0..0..0..1....0..0..0..0..1....0..0..0..0..1

%e ..1..0..0..0..0....0..0..0..0..1....0..0..0..0..1....0..0..0..0..1

%e ..1..0..0..0..0....0..0..0..0..1....0..0..0..0..1....0..0..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 10 2013