login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224530
Sequence F_n from a paper by Robert Osburn and Brundaban Sahu.
2
1, 0, 2, 6, 30, 144, 758, 4080, 22702, 128832, 744300, 4359972, 25842414, 154689912, 933828324, 5678696556, 34754244174, 213901762464, 1323104558204, 8220846355956, 51284447272084, 321095305733280, 2017050339848388, 12708912192988128, 80296949632284814, 508618518515268720
OFFSET
0,3
COMMENTS
These are the coefficients of the power series expansion of F with respect to powers of t_2, where F(z) = Sum_{k,l in Z} q^(2*k^2 + k*l + 3*l^2) and t_2(z) = eta(z)*eta(23*z)/F(z), where eta(z) is the Dedekind eta-function and q = exp(2*Pi*i*z). - Robin Visser, Aug 03 2023
Osburn and Sahu prove that if p is a prime which is a quadratic residue mod 23 and n, r are positive integers, then a(n*p^r) == a(n*p^(r-1)) (mod p). - Robin Visser, Aug 03 2023
LINKS
Robert Osburn and Brundaban Sahu, Congruences via modular forms, arXiv:0912.0173 [math.NT], 2009-2010.
PROG
(Sage)
def a(n):
if n==0: return 1
F=sum([sum([x^(2*a^2+a*b+3*b^2) for a in range(-n, n)]) for b in range(-n, n)])
eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)])
t2 = eta*eta(x=x^23)/F
for k in range(1, n):
c = F.taylor(x, 0, k).coefficient(x^k)
F -= c*(t2^k)
return F.taylor(x, 0, n).coefficient(x^n) # Robin Visser, Aug 03 2023
CROSSREFS
Cf. A224529 (sequence f_n).
Sequence in context: A073969 A379724 A295863 * A120950 A055695 A113593
KEYWORD
nonn
AUTHOR
Joerg Arndt, Apr 09 2013
EXTENSIONS
More terms from Robin Visser, Aug 03 2023
STATUS
approved