Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 May 30 2019 00:41:13
%S 1,2,6,26,142,876,5790,40020,285582,2087612,15551620,117629724,
%T 900964558,6973745924,54464010540,428645647572,3396238954446,
%U 27067890450300,216857021933172,1745460025192140,14107695302434356,114455036696796168,931738743735004596
%N Sequence f_n from a paper by Robert Osburn and Brundaban Sahu.
%C Conjecture 1.1 of Osburn and Sahu is if p is a prime and JacobiSymbol(p, 23) = 1 and n>0 then a(n * p) == a(n) (mod p). - _Michael Somos_, Sep 21 2013
%H Alois P. Heinz, <a href="/A224529/b224529.txt">Table of n, a(n) for n = 0..1000</a>
%H Robert Osburn, Brundaban Sahu, <a href="http://arxiv.org/abs/0912.0173">Congruences via modular forms</a>, arXiv:0912.0173 [math.NT], (Sep 02 2010).
%H R. Osburn and B. Sahu, <a href="https://doi.org/10.1090/S0002-9939-2010-10771-2">Congruences via modular forms</a>, Proc. Amer. Math. Soc. 139 (2011), 2375-2381.
%F n^2 * a(n) = (14*n^2 - 21*n + 9) * a(n-1) + (-57*n^2 + 171*n - 136) * a(n-2) + (106*n^2 - 477*n + 551) * a(n-3) + (-90*n^2 + 540*n - 816) * a(n-4) + (16*n^2 - 120*n + 224) * a(n-5) + (19*n^2 - 171*n + 380) * a(n-6). - _Michael Somos_, Sep 21 2013
%F G.f. A(x) satisfies f(q) = A(g(q)) where f is the g.f. for A028959 and g(q) = eta(q) * eta(q^23) / f(q). - _Michael Somos_, Sep 21 2013
%e G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 142*x^4 + 876*x^5 + 5790*x^6 + 40020*x^7 + ...
%p p := (1+224*x -864*x^2 -544*x^3 +9664*x^4 -26112*x^5 +36288*x^6 -27648*x^7 +9216*x^8) ;
%p s := (1-14*x+57*x^2-106*x^3+90*x^4-16*x^5-19*x^6)^(1/2) ;
%p A := (5*(53-400*x+944*x^2-912*x^3+288*x^4)-24*(11-16*x)*s)/p ;
%p f := 4*x*(1-45*x+865*x^2-9270*x^3+60648*x^4 -249463*x^5+640904*x^6 -987056*x^7 +821224*x^8-249920*x^9 -71232*x^10+20610*x^11 -(1-21*x +148*x^2 -380*x^3+212*x^4)*(1-17*x+90*x^2-142*x^3 -14*x^4)*s)*(6*A)^3/23^6;
%p ogf := A^(1/4) * hypergeom([1/12, 5/12],[1], f);
%p series(ogf, x=0, 101); # _Mark van Hoeij_, Apr 12 2014
%t a[ n_] := If[ n < 0, 0, With[ {f = Series[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}], g = x QPochhammer[ x] QPochhammer[ x^23]}, SeriesCoefficient[ ComposeSeries[ f, InverseSeries[ g/f ], {x, 0, n}]]]; (* _Michael Somos_, Sep 21 2013 *)
%Y Cf. A224530 (sequence F_n).
%Y Cf. A028959, A030199.
%K nonn
%O 0,2
%A _Joerg Arndt_, Apr 09 2013