login
Expansion of (1-x)*(1-3*x)*(1-3*x+x^2)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
2

%I #20 Apr 02 2024 11:39:04

%S 1,2,6,20,70,251,911,3327,12190,44744,164407,604487,2223504,8181175,

%T 30108147,110820165,407946421,1501844193,5529362694,20358557249,

%U 74961030414,276017648570,1016360893036,3742540945813,13781324308298,50748099850042

%N Expansion of (1-x)*(1-3*x)*(1-3*x+x^2)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

%C A diagonal of the square array A223968.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-28,35,-15,1).

%F a(n) = A223968(n,n).

%F G.f.: (1-x)*(1-3*x)*(1-3*x+x^2)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

%F a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) with a(0) = 1, a(1) = 2, a(2) = 6, a(3) = 20, a(4) = 70.

%t LinearRecurrence[{9,-28,35,-15,1},{1,2,6,20,70,251,911,3327,12190,44744,164407,604487,2223504,8181175},40] (* _Harvey P. Dale_, Apr 24 2016 *)

%Y Cf. A223968

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Apr 08 2013

%E a(8) corrected by _Georg Fischer_, May 10 2019