login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224445
Numerators of certain rationals approximating sqrt(3).
2
2, 7, 111, 887, 28379, 227025, 3632379, 29058999, 1859775507, 14878203341, 238051251025, 1904410004001, 60941120098639, 487528960737109, 7800463371608019, 62403706972529847, 7987674492474125571, 63901395939775325733
OFFSET
0,1
COMMENTS
The corresponding denominators are given in A224446.
The rationals r(n) are the partial sums of the series 2*sqrt(1 - 1/4) which represents sqrt(3).
REFERENCES
H. K. Strick, Geschichten aus der Mathematik, Spektrum Spezial 2/2009, p. 45 (on Newton).
LINKS
FORMULA
a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n) = 2*(1 - 2*Sum_{k=1..n} C(k-1)/4^(2*k)), with the Catalan numbers C(n) = A000108(n).
r(n) gives the partial sums of the convergent series 2*sqrt(1 - 1/4), representing sqrt(3), with decimal expansion given in A002194.
EXAMPLE
The rationals r(n) are, for n=0..10: 2, 7/4, 111/64, 887/512, 28379/16384, 227025/131072, 3632379/2097152, 29058999/16777216, 1859775507/1073741824, 14878203341/8589934592, 238051251025/137438953472.
The values for r(10^k), k = 0,..,3 are (Maple 10 digits): 1.750000000, 1.732050812, 1.732050808, 1.732050808
This should be compared with sqrt(3) (Maple 10 digits): 1.732050808.
MATHEMATICA
r[n_] := 2*(1 - 2*Sum[ CatalanNumber[k - 1]/4^(2*k), {k, 1, n}]); Table[r[n], {n, 0, 17}] // Numerator (* Jean-François Alcover, Apr 09 2013 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Wolfdieter Lang, Apr 09 2013
STATUS
approved