login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The Wiener index of the dendrimer D_1[n], defined pictorially in the A. R. Ashrafi et al. reference.
1

%I #8 Jul 22 2022 11:30:48

%S 84,18327,233565,1771209,10839249,59193537,301745505,1470068769,

%T 6938902689,32002414497,145020899745,648175476129,2865160922529,

%U 12550658135457,54563037754785,235694448080289,1012548295652769,4329277751424417,18433454242526625

%N The Wiener index of the dendrimer D_1[n], defined pictorially in the A. R. Ashrafi et al. reference.

%C a(2) has been checked by the direct computation of the Wiener index (using Maple).

%D A. R. Ashrafi and H. Shabani, Computing Padmakar-Ivan index of four classes of dendrimers, Bulgarian Chem. Comm., 44, N0. 2, 2012, 127-130.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (13,-64,148,-160,64).

%F a(n) = - 2655 + 26907*2^n + 16245*n*4^n -24168*4^n -570*n*2^n.

%F G.f. = 3(28+5745z+230z^2-34880z^3+20912z^4)/[(1-z)(1-2z)^2*(1-4z)^2].

%p a := proc (n) options operator, arrow: -2655+26907*2^n+16245*4^n*n-24168*4^n-570*2^n*n end proc: seq(a(n), n = 0 .. 18);

%Y Cf. A224430

%K nonn,easy

%O 0,1

%A _Emeric Deutsch_, Apr 06 2013