login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x)*(1-3*x)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
6

%I #15 Feb 16 2024 12:33:44

%S 1,5,20,75,275,1001,3639,13243,48280,176341,645150,2363596,8669142,

%T 31825005,116914020,429737220,1580244061,5812839156,21387636101,

%U 78708626396,289699273501,1066406842677,3925882147566,14453780545834,53216783798234,195944670698910

%N Expansion of (1-x)*(1-3*x)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

%C A diagonal of the square array A223968.

%H Michael De Vlieger, <a href="/A224422/b224422.txt">Table of n, a(n) for n = 0..1766</a>

%H László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-28,35,-15,1).

%F a(n) = A223968(n+3,n) = A223968(n+4,n).

%F a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) with a(0) = 1, a(1) = 5, a(2) = 20, a(3) = 75, a(4) = 275.

%t LinearRecurrence[{9, -28, 35, -15, 1}, {1, 5, 20, 75, 275}, 26] (* _Michael De Vlieger_, Aug 05 2021 *)

%Y Cf. A223968.

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Apr 06 2013