login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX7 0..2 arrays with rows unimodal and antidiagonals nondecreasing
1

%I #4 Apr 05 2013 07:10:53

%S 239,10511,227112,3518302,48166179,644368221,8684742989,118171436342,

%T 1617034882854,22180823169132,304470584215636,4179566726619035,

%U 57366850907237080,787294489483452053,10803851806245324942

%N Number of nX7 0..2 arrays with rows unimodal and antidiagonals nondecreasing

%C Column 7 of A224374

%H R. H. Hardin, <a href="/A224373/b224373.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 36*a(n-1) -505*a(n-2) +3667*a(n-3) -15271*a(n-4) +38113*a(n-5) -59621*a(n-6) +53813*a(n-7) -125335*a(n-8) +657330*a(n-9) -1326014*a(n-10) +2644047*a(n-11) +3529521*a(n-12) +7803900*a(n-13) +959690*a(n-14) +28175350*a(n-15) +27269532*a(n-16) +18725976*a(n-17) +1826832*a(n-18) +1263744*a(n-19) for n>24

%e Some solutions for n=3

%e ..0..0..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..1..1..0

%e ..0..1..1..1..1..1..0....0..1..1..1..1..2..1....0..1..2..1..1..0..0

%e ..1..1..2..2..2..2..2....1..2..2..2..2..2..1....1..2..1..1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 05 2013