|
|
A224364
|
|
G.f.: exp( Sum_{n>=1} A064027(n)*x^n/n ), where A064027(n) = (-1)^n*Sum_{d|n}(-1)^d*d^2.
|
|
5
|
|
|
1, 1, 2, 5, 10, 18, 32, 59, 106, 181, 305, 518, 867, 1418, 2301, 3724, 5966, 9448, 14862, 23263, 36165, 55802, 85609, 130732, 198574, 299941, 450946, 675153, 1006395, 1493598, 2207928, 3251926, 4771934, 6977018, 10166502, 14766512, 21379861, 30859013, 44409543, 63729443
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
"Number of the pyramid partition of pyramid partitions obtained from the fundamental pyramid partition after the removal of n bricks." [From the Bouttier et al. reference] - Joerg Arndt, Jul 03 2014
|
|
REFERENCES
|
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{k>=1} (1+q^(2*k-1))^(2*k-1) / (1-q^(2*k))^(2*k). - Joerg Arndt, Jul 03 2014
a(n) ~ exp(1/6 + 3 * 2^(-5/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (2^(25/36) * A^2 * sqrt(3*Pi) * n^(13/18)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 14 2017
|
|
EXAMPLE
|
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 32*x^6 + 59*x^7 +...
where
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 26*x^5/5 + 30*x^6/6 + 50*x^7/7 + 83*x^8/8 + 91*x^9/9 + 78*x^10/10 +...+ A064027(n)*x^n/n +...
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1) / (1 - x^(2*k))^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2017 *)
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sumdiv(k, d, (-1)^d*d^2)*(-x)^k/k)+x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) N=66; q='q+O('q^N); Vec(prod(k=1, N, (1+q^(2*k-1))^(2*k-1)/(1-q^(2*k))^(2*k) )) \\ Joerg Arndt, Jul 03 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|