login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of idempotent n X n 0..4 matrices of rank n-1.
1

%I #8 Aug 29 2018 08:45:47

%S 1,18,147,996,6245,37494,218743,1249992,7031241,39062490,214843739,

%T 1171874988,6347656237,34179687486,183105468735,976562499984,

%U 5187988281233,27465820312482,144958496093731,762939453124980

%N Number of idempotent n X n 0..4 matrices of rank n-1.

%C Column 4 of A224333.

%H R. H. Hardin, <a href="/A224329/b224329.txt">Table of n, a(n) for n = 1..210</a>

%F a(n) = n*(2*5^(n-1)-1).

%F a(n) = 12*a(n-1) - 46*a(n-2) + 60*a(n-3) - 25*a(n-4).

%F G.f.: x*(1 + 6*x - 23*x^2) / ((1 - x)^2*(1 - 5*x)^2). - _Colin Barker_, Aug 29 2018

%e Some solutions for n=3:

%e ..0..0..0....1..0..0....0..4..2....1..0..0....1..0..0....1..0..0....1..2..0

%e ..3..1..0....0..1..2....0..1..0....1..0..3....0..1..3....0..0..0....0..0..0

%e ..3..0..1....0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..1

%o (PARI) Vec(x*(1 + 6*x - 23*x^2) / ((1 - x)^2*(1 - 5*x)^2) + O(x^40)) \\ _Colin Barker_, Aug 29 2018

%Y Cf. A224333.

%K nonn,easy

%O 1,2

%A _R. H. Hardin_, formula via _M. F. Hasler_ _William J. Keith_ and Rob Pratt in the Sequence Fans Mailing List, Apr 03 2013