%I #13 Jun 09 2024 10:22:30
%S 2,3,5,11,13,19,31,41,43,61,109,139,251,643,4933,9433,36493,191416111,
%T 1304119699
%N Primes without "7" as a digit that remain prime when any single digit is replaced with "7".
%C No more terms < 10^13.
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/23652.html">Prime Curios! 1304119699</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_591.htm">Puzzle 591</a>
%t lst = {}; n = 7; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 36493}]; lst
%t Select[Prime[Range[4000]],DigitCount[#,10,7]==0&&AllTrue[FromDigits/@Table[ReplacePart[ IntegerDigits[#],n->7],{n,IntegerLength[#]}],PrimeQ]&] (* The program generates the first 17 terms of the sequence. *) (* _Harvey P. Dale_, Jun 09 2024 *)
%Y Cf. A224319-A224320, A224322. Subsequence of A038615.
%K base,more,nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Apr 03 2013