login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224320
Primes without "3" as a digit that remain prime when any single digit is replaced with "3".
2
2, 5, 7, 11, 17, 41, 47, 71, 107, 167, 179, 197, 449, 859, 1019, 1061, 1499, 2089, 16901, 47717, 56269, 86269, 11917049
OFFSET
1,1
COMMENTS
No more terms < 10^13.
MATHEMATICA
lst = {}; n = 3; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 86269}]; lst
p3Q[n_]:=Module[{idn=IntegerDigits[n]}, FreeQ[idn, 3] && AllTrue[ FromDigits/@ Table[ReplacePart[idn, i->3], {i, IntegerLength[n]}], PrimeQ]]; Select[Prime[Range[10^6]], p3Q] (* The program uses the function AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2014 *)
CROSSREFS
Cf. A224319, A224321-A224322. Subsequence of A038611.
Sequence in context: A265817 A045349 A338339 * A247052 A364649 A163695
KEYWORD
base,more,nonn
AUTHOR
STATUS
approved