login
A224265
Number of 5Xn 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing
1
21, 441, 5246, 41012, 238366, 1122522, 4542734, 16423026, 54399996, 167906334, 488545330, 1351296894, 3575548984, 9095336020, 22330458551, 53087335395, 122539314344, 275260139864, 602890604743, 1289688693983, 2698414556120
OFFSET
1,1
COMMENTS
Row 5 of A224262
LINKS
FORMULA
Empirical: a(n) = (1/1379196149760000)*n^20 - (1/137919614976000)*n^19 + (293/304874938368000)*n^18 + (1/4619317248000)*n^17 + (157/352235520000)*n^16 + (8317/2092278988800)*n^15 + (2780521/20922789888000)*n^14 + (383809/213497856000)*n^13 + (203282759/6897623040000)*n^12 + (34268483/229920768000)*n^11 + (1734251209/357654528000)*n^10 + (5309275061/1609445376000)*n^9 + (4327647950569/17435658240000)*n^8 + (321770123/1257984000)*n^7 + (506327783081/101896704000)*n^6 - (990071393771/62270208000)*n^5 + (554590430608603/18525386880000)*n^4 - (8854141496479/77189112000)*n^3 + (188734999923373/97772875200)*n^2 - (257473009033/29099070)*n + 13615 for n>4
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..1....0..1..2....0..0..0....0..1..0....1..0..0....0..1..0
..0..0..0....0..1..1....0..1..2....0..0..0....0..1..0....1..1..0....0..1..0
..0..1..2....0..1..1....0..1..2....0..0..1....0..1..0....1..1..0....1..1..1
..0..2..2....0..2..1....1..1..2....1..1..1....0..1..0....1..2..0....1..2..1
..2..2..2....2..2..1....1..1..2....1..2..2....1..1..2....2..2..1....2..2..1
CROSSREFS
Sequence in context: A206880 A206997 A189613 * A206886 A188770 A223922
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 02 2013
STATUS
approved