login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest number k with property that if the base-n expansion of k is reversed, the result is a nontrivial multiple of k.
1

%I #21 Feb 27 2017 02:58:32

%S 32,75,8,245,12,21,16,1089,15,1859,21,39,28,4335,24,6137,24,57,40,

%T 11109,33,115,39,45,52,22707,35,27869,40,93,64,55,51,47915,57,111,76,

%U 65559,48,75809,56,129,88,99405,69,329,60,119,65,143259,72,265,63,95,112,198417,87,219539

%N a(n) = smallest number k with property that if the base-n expansion of k is reversed, the result is a nontrivial multiple of k.

%C In other words, k divides (reversal of k in base n), and (k-reversed)/k > 1.

%C The numbers are written in base 10.

%C Theorem: The length of k (in base n) is 2 iff n>=5 and n+1 is composite, otherwise 4.

%D N. J. A. Sloane, paper in preparation.

%D See A214927 for further references and links.

%H Michel Marcus, <a href="/A224220/b224220.txt">Table of n, a(n) for n = 3..400</a>

%H T. J. Kaczynski, <a href="http://www.jstor.org/stable/2689056">Note on a Problem of Alan Sutcliffe</a>, Math. Mag., 41 (1968), 84-86.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/mm005281.pdf">Digit Reversal Without Apology</a>, Mathematics Magazine, Vol. 80 (2007), pp. 129-132. Also arXiv:math/0511366 [math.HO], 2005.

%H Alan Sutcliffe, <a href="http://www.jstor.org/stable/2689015">Integers That Are Multiplied When Their Digits Are Reversed</a>, Mathematics Magazine, 39 (1966), 282-287.

%F If n=3 or n>3 and n+1 is prime, a(n) = (n^2-1)(n+1) (cf. A152619).

%e The numbers a(n) for n = 3, ..., 11 written in base n are 1012, 1023, 13, 1045, 15, 25, 17, 1089, 14.

%e For example, 1012 (base 3) = 32 (base 10), and 2101 (base 3) = 64 (base 10) = 2*32.

%t Table[k = 2; While[Nand[IntegerQ@ #, # != 1] &[FromDigits[#, n]/k] &@ Reverse@ IntegerDigits[k, n], k++]; k, {n, 3, 60}] (* _Michael De Vlieger_, Feb 26 2017 *)

%o (PARI) isok(k, n) = {my(rk = fromdigits(Vecrev(digits(k, n)), n)); !(rk % k) && (rk > k);}

%o a(n) = {my(k = 1); while (!isok(k, n), k++); k;} \\ _Michel Marcus_, Feb 26 2017

%Y Cf. A214927, A006093, A072668, A152619.

%K nonn,base

%O 3,1

%A _N. J. A. Sloane_, Apr 01 2013