%I #18 Jun 27 2023 11:11:20
%S 0,0,0,1,11,88,638,4478,31199,218033,1535207,10910759,78310579,
%T 567588264,4152765025,30656248812,228215224472,1712296117750,
%U 12941799657414,98486737654025,754273093950128,5811161481943201,45020589539040033,350604675228411590,2743720335733822423
%N Number of permutations of length n containing exactly 1 occurrence of 1243.
%H Andrew R. Conway and Anthony J. Guttmann, <a href="https://arxiv.org/abs/2306.12682">Counting occurrences of patterns in permutations</a>, arXiv:2306.12682 [math.CO], 2023. See pp. 16, 20.
%H Brian Nakamura, <a href="http://puma.dimai.unifi.it/24_2/nakamura.pdf">Approaches for enumerating permutations with a prescribed number of occurrences of patterns</a>, PU. M. A. 24 (2013), 179-194.
%H Brian Nakamura, <a href="http://arxiv.org/abs/1301.5080">Approaches for enumerating permutations with a prescribed number of occurrences of patterns</a>, arXiv 1301.5080, 2013
%p Programs can be obtained from the arXiv 1301.5080 link.
%Y Cf. A217057.
%K nonn
%O 1,5
%A _Brian Nakamura_, Apr 01 2013
|