login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX6 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing
1

%I #4 Mar 31 2013 20:32:32

%S 610,52591,1253770,15925611,143558572,1038484760,6360047093,

%T 33901838632,160168789130,680269560125,2628521964178,9335303943077,

%U 30746296739238,94635507313740,274045375789233,750986358734170,1957473961121912

%N Number of nX6 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing

%C Column 6 of A224173

%H R. H. Hardin, <a href="/A224171/b224171.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (42587101/1600593426432000)*n^18 + (83940121/177843714048000)*n^17 + (308341547/31384184832000)*n^16 + (23656547/201180672000)*n^15 + (19255277651/15692092416000)*n^14 + (8091120109/747242496000)*n^13 + (255948441937/3621252096000)*n^12 + (100806994639/201180672000)*n^11 + (447955595981/219469824000)*n^10 + (936116756663/73156608000)*n^9 + (89792239149827/2414168064000)*n^8 + (167645449561/1026432000)*n^7 + (5108091310778959/11769069312000)*n^6 - (433115879452601/217945728000)*n^5 + (6324467156344901/653837184000)*n^4 - (35759831917609/698544000)*n^3 + (1815894225096923/15437822400)*n^2 + (1874103131609/6126120)*n - 1349188 for n>9

%e Some solutions for n=3

%e ..0..0..1..1..2..3....0..0..1..1..1..0....0..0..0..1..2..1....0..0..1..1..0..0

%e ..0..0..1..1..2..3....0..2..3..2..2..0....0..0..0..3..3..1....0..0..1..2..2..0

%e ..0..0..1..2..3..3....0..2..3..3..2..0....0..0..1..3..3..3....0..2..2..2..2..2

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 31 2013