login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 7Xn 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing
1

%I #4 Mar 31 2013 14:46:32

%S 128,2916,9681,18408,32910,60214,114537,222841,437497,857104,1662992,

%T 3177801,5958392,10937977,19639113,34486391,59258268,99731248,

%U 164588012,266685480,424810970,666096886,1029319580,1569379741,2363354232

%N Number of 7Xn 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing

%C Row 7 of A224158

%H R. H. Hardin, <a href="/A224163/b224163.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/87178291200)*n^14 - (1/1779148800)*n^13 + (1/35481600)*n^12 - (599/958003200)*n^11 + (2503/87091200)*n^10 - (15289/29030400)*n^9 + (14386957/609638400)*n^8 - (43214887/87091200)*n^7 + (53001143/7257600)*n^6 - (371883179/5443200)*n^5 + (31780522507/59875200)*n^4 - (22988847851/6652800)*n^3 + (639379939651/30270240)*n^2 - (888679471/10010)*n + 189847 for n>10

%e Some solutions for n=3

%e ..0..0..0....1..0..0....0..1..0....0..0..0....0..0..1....0..0..0....1..1..0

%e ..0..0..0....1..0..0....1..0..0....0..1..0....1..1..1....0..0..1....1..0..0

%e ..0..0..0....0..0..0....0..0..0....1..0..0....1..1..1....1..1..0....1..1..0

%e ..1..0..0....0..0..0....1..0..0....1..0..0....1..1..0....1..0..0....1..0..0

%e ..0..0..0....0..0..1....1..0..0....0..0..0....1..0..0....0..1..0....0..1..0

%e ..1..0..0....1..1..0....1..0..0....1..0..0....1..0..0....1..1..0....1..0..0

%e ..0..0..0....1..1..1....1..1..0....0..0..0....1..1..0....1..0..0....1..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 31 2013