login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A112141(k) - 1 is prime.
1

%I #34 Feb 12 2023 14:25:14

%S 1,2,6,7,11,17,20,21,36,69,84,168,207,248,401,431,435,1468,4421,8949

%N Numbers k such that A112141(k) - 1 is prime.

%C This is the semiprime analog of A057704.

%C a(21) > 10000. - _Tyler Busby_, Feb 12 2023

%e 4*6*9*10*14*15 - 1 = 453599 which is prime.

%t NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[NextSemiPrime, 2^2, n - 1]; k = 1; lst = {}; While[k < 3501, If[ PrimeQ[f[k] - 1], Print[k]; AppendTo[lst, k]]; k++]; lst

%o (PARI) s=3;t=1;for(n=1,1000,while(bigomega(s++)!=2,);t*=s;if(ispseudoprime(t-1),print1(n", "))) \\ _Charles R Greathouse IV_, Apr 03 2013

%Y Cf. A112141, A057704, A224081.

%K nonn,more

%O 1,2

%A _Jonathan Vos Post_ and _Robert G. Wilson v_, Apr 02 2013

%E a(19) from _Charles R Greathouse IV_, Apr 03 2013

%E a(20) from _Tyler Busby_, Feb 12 2023