Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2013 15:46:32
%S 2,3,5,7,11,5,13,17,11,19,23,29,7,23,31,13,29,37,17,41,23,47,5,29,53,
%T 11,59,13,37,53,61,19,43,59,67,23,47,71,31,71,79,59,83,41,89,17,73,89,
%U 97,59,83,107,29,61,101,109,83,107,131,17,89,113,137,19,59
%N Triangle read by rows: n-th row gives the primes p of form (m - k^2) where m = A214583(n), k < m and gcd(k,m) = 1.
%C Defined where A214583 is defined.
%H Reinhard Zumkeller, <a href="/A224075/b224075.txt">Rows n = 1..41 of triangle, flattened</a>
%e . n | A214583 | T(n,k) for k = 1 .. A224076(n)
%e . ----+---------+-------------------------------------------------------
%e . 1 | 3 | [2]
%e . 2 | 4 | [3]
%e . 3 | 6 | [5]
%e . 4 | 8 | [7]
%e . 5 | 12 | [11]
%e . 6 | 14 | [5,13]
%e . 7 | 18 | [17]
%e . 8 | 20 | [11,19]
%e . 9 | 24 | [23]
%e . 10 | 30 | [29]
%e . 11 | 32 | [7,23,31] 32-5^2, 32-3^2, 32-1^2
%e . 12 | 38 | [13,29,37] 38-5^2, 38-3^2, 38-1^2
%e . 13 | 42 | [17,41] 42-5^2, 42-1^2
%e . 14 | 48 | [23,47] 48-5^2, 48-1^2
%e . 15 | 54 | [5,29,53] 54-7^2, 54-5^2, 54-1^2
%e . 16 | 60 | [11,59] 60-7^2, 60-1^2
%e . 17 | 62 | [13,37,53,61] 62-7^2, 62-5^2, 62-3^2, 62-1^2
%e . 18 | 68 | [19,43,59,67] 68-7^2, 68-5^2, 68-3^2, 68-1^2
%e . 19 | 72 | [23,47,71] 72-7^2, 72-5^2, 72-1^2
%e . 20 | 80 | [31,71,79] 80-7^2, 80-3^2, 80-1^2
%e . 21 | 84 | [59,83] 84-5^2, 83-1^2
%e . 22 | 90 | [41,89] 90-7^2, 90-1^2
%e . 23 | 98 | [17,73,89,97] 98-9^2, 98-5^2, 98-3^2, 98-1^2
%e . 24 | 108 | [59,83,107] 108-7^2, 108-5^2, 108-1^2
%e . 25 | 110 | [29,61,101,109] 110-9^2, 110-7^2, 101-3^2, 101-1^2
%e . 26 | 132 | [83,107,131] 132-7^2, 132-5^2, 132-1^2
%e . 27 | 138 | [17,89,113,137] 138-11^2, 138-7^2, ...
%e . 28 | 140 | [19,59,131,139] ...
%e . 29 | 150 | [29,101,149]
%e . 30 | 180 | [11,59,131,179]
%e . 31 | 182 | [61,101,157,173,181]
%e . 32 | 198 | [29,149,173,197]
%e . 33 | 252 | [83,131,227,251]
%e . 34 | 318 | [29,149,197,269,293,317]
%e . 35 | 360 | [71,191,239,311,359]
%e . 36 | 398 | [37,109,173,229,277,317,349,373,389,397]
%e . 37 | 468 | [107,179,347,419,443,467]
%e . 38 | 570 | [41,281,401,449,521,569]
%e . 39 | 572 | [43,131,211,283,347,491,523,547,563,571]
%e . 40 | 930 | [89,401,569,641,761,809,881,929]
%e . 41 | 1722 | [353,761,881,1097,1193,1361,1433,1553,1601,1697,1721].
%o (Haskell)
%o a224075 n k = a224075_tabf !! (n-1) !! (k-1)
%o a224075_row n = a224075_tabf !! (n-1)
%o a224075_tabf = f 3 where
%o f x = g [] 3 1 where
%o g ps i k2 | x <= k2 = ps : f (x + 1)
%o | gcd k2 x > 1 = g ps (i + 2) (k2 + i)
%o | a010051 q == 1 = g (q:ps) (i + 2) (k2 + i)
%o | otherwise = f (x + 1)
%o where q = x - k2
%Y Cf. A224076 (row lengths), A010051.
%K nonn,tabf
%O 1,1
%A _Reinhard Zumkeller_, Mar 31 2013