Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2013 11:10:42
%S 148,4690,57911,428949,2392915,11231300,46853641,179545949,646161612,
%T 2215310269,7295294696,23173431000,71137228340,211216789027,
%U 606907100518,1688654512840,4553248388246,11908977568334,30245780813181
%N Number of nX6 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing
%C Column 6 of A224057
%H R. H. Hardin, <a href="/A224055/b224055.txt">Table of n, a(n) for n = 1..178</a>
%F Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/593480641388544000)*n^23 + (1/11491439984640000)*n^22 + (59/20274183401472000)*n^21 + (204271/2432902008176640000)*n^20 + (34451/17377871486976000)*n^19 + (18917939/448166159400960000)*n^18 + (769849/995924798668800)*n^17 + (226679623/17575143505920000)*n^16 + (2152013/11412430848000)*n^15 + (706815667/289700167680000)*n^14 + (9710969/517321728000)*n^13 + (22058018740169/52725430517760000)*n^12 + (883262112781/878757175296000)*n^11 + (30292372315283/675967057920000)*n^10 + (425362282393/5977939968000)*n^9 + (18858448588311589/8002967132160000)*n^8 - (2707211596157/114328101888000)*n^7 + (2638894624680309119/59133034920960000)*n^6 - (590269621381831/6636704256000)*n^5 + (21039414018476657/25935541632000)*n^4 - (10575054526365457/1955457504000)*n^3 + (4363361309424841/172982779200)*n^2 + (520015184729/102965940)*n - 216272 for n>7
%e Some solutions for n=3
%e ..1..0..0..0..0..0....0..0..0..0..2..0....0..1..1..0..0..0....0..0..0..0..2..0
%e ..2..0..0..0..0..0....0..0..1..2..1..0....1..2..2..0..0..0....0..0..2..2..1..0
%e ..1..1..0..0..0..0....0..2..2..1..1..1....2..2..2..1..1..0....2..2..2..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 30 2013