login
T(n,k)=Number of nXk 0..3 arrays with rows and columns unimodal and antidiagonals nondecreasing
7

%I #4 Apr 01 2013 07:14:14

%S 4,16,16,50,160,50,130,984,984,130,296,4580,9731,4580,296,610,17723,

%T 67585,67585,17723,610,1163,59792,376734,638996,376734,59792,1163,

%U 2083,180821,1801402,4646480,4646480,1801402,180821,2083,3544,499357,7655477

%N T(n,k)=Number of nXk 0..3 arrays with rows and columns unimodal and antidiagonals nondecreasing

%C Table starts

%C ....4......16........50.........130..........296...........610...........1163

%C ...16.....160.......984........4580........17723.........59792.........180821

%C ...50.....984......9731.......67585.......376734.......1801402........7655477

%C ..130....4580.....67585......638996......4646480......28403642......153482649

%C ..296...17723....376734.....4646480.....41991129.....310514900.....1999959111

%C ..610...59792...1801402....28403642....310514900....2701569493....20096076442

%C .1163..180821...7655477...153482649...1999959111...20096076442...169750613182

%C .2083..499357..29502561...753824187..11666303576..133729094355..1265415997425

%C .3544.1276595.104437965..3415377142..63064614327..821109158656..8609328529478

%C .5776.3053471.342818189.14392067725.319676018383.4743773544158.54810160645347

%H R. H. Hardin, <a href="/A224050/b224050.txt">Table of n, a(n) for n = 1..161</a>

%F Empirical: columns k=1..5 are polynomials of degree 6*k for n>0,0,1,3,5

%e Some solutions for n=3 k=4

%e ..0..2..0..0....1..1..2..0....1..1..1..1....0..3..1..1....0..0..3..1

%e ..3..2..2..1....3..3..2..2....2..2..3..1....3..2..2..2....2..3..3..1

%e ..3..3..3..1....3..3..3..1....2..3..2..2....2..2..2..1....3..3..3..1

%Y Column 1 is A223659

%Y Column 2 is A224058

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Apr 01 2013