login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal
1

%I #4 Mar 30 2013 10:19:23

%S 1024,100000,1859020,17735200,120352359,646270418,2903448338,

%T 11324147154,39352493380,124192808325,361131166470,978546580876,

%U 2493201619797,6016880535375,13837190690133,30477772502130,64570854690796

%N Number of 5Xn 0..3 arrays with rows nondecreasing and antidiagonals unimodal

%C Row 5 of A224024

%H R. H. Hardin, <a href="/A224027/b224027.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (769/444787200)*n^15 + (781507/10897286400)*n^14 + (732989/444787200)*n^13 + (6062213/239500800)*n^12 + (4527293/15966720)*n^11 + (49818529/21772800)*n^10 + (300432343/21772800)*n^9 + (9176781683/152409600)*n^8 + (2072451091/10886400)*n^7 + (1971136933/4354560)*n^6 + (16020797923/19958400)*n^5 + (55454431657/59875200)*n^4 - (688455589/2402400)*n^3 - (18610604083/37837800)*n^2 + (69728249/15015)*n + 2530 for n>3

%e Some solutions for n=3

%e ..0..0..2....0..0..2....0..0..2....0..0..2....0..0..0....0..0..0....0..0..0

%e ..0..2..3....0..2..2....0..2..3....0..0..2....0..0..1....0..2..2....0..0..2

%e ..1..3..3....0..2..3....1..2..3....0..2..3....1..1..1....0..0..0....0..2..3

%e ..0..1..3....2..3..3....0..1..2....2..3..3....1..2..2....0..0..1....1..2..2

%e ..0..3..3....1..1..3....0..0..0....2..2..3....1..1..2....0..0..3....1..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 30 2013