login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..3 arrays with rows unimodal and columns nondecreasing
1

%I #4 Mar 30 2013 08:05:18

%S 130,3526,44803,358118,2086196,9647292,37395816,126087157,379654704,

%T 1040942916,2637614941,6248087300,13964013792,29662913488,60254807616,

%U 117633453657,221649696158,404535879938,717351048575,1239192239626

%N Number of nX4 0..3 arrays with rows unimodal and columns nondecreasing

%C Column 4 of A223987

%H R. H. Hardin, <a href="/A223983/b223983.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (3551/47900160)*n^12 + (89357/39916800)*n^11 + (132341/4354560)*n^10 + (177787/725760)*n^9 + (1892753/1451520)*n^8 + (5834147/1209600)*n^7 + (11057083/870912)*n^6 + (17370313/725760)*n^5 + (6973385/217728)*n^4 + (26874943/907200)*n^3 + (186503/10395)*n^2 + (8831/1386)*n + 1

%e Some solutions for n=3

%e ..1..1..0..0....0..1..0..0....1..0..0..0....1..1..1..2....0..1..1..0

%e ..1..2..0..0....1..3..2..0....1..3..2..0....1..1..1..2....0..2..3..2

%e ..2..2..1..1....3..3..3..2....2..3..3..3....1..2..2..3....1..3..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 30 2013