Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 24 2018 08:52:29
%S 16,81,177,321,558,928,1479,2267,3356,4818,6733,9189,12282,16116,
%T 20803,26463,33224,41222,50601,61513,74118,88584,105087,123811,144948,
%U 168698,195269,224877,257746,294108,334203,378279,426592,479406,536993,599633
%N Number of 4 X n 0..1 arrays with diagonals and antidiagonals unimodal and rows nondecreasing.
%C Row 4 of A223949.
%H R. H. Hardin, <a href="/A223951/b223951.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/3)*n^4 + (2/3)*n^3 + (37/6)*n^2 + (107/6)*n + 23 for n>2.
%F Conjectures from _Colin Barker_, Aug 24 2018: (Start)
%F G.f.: x*(16 + x - 68*x^2 + 86*x^3 - 7*x^4 - 33*x^5 + 13*x^6) / (1 - x)^5.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
%F (End)
%e Some solutions for n=3:
%e ..0..1..1....1..1..1....0..0..1....0..1..1....0..0..1....0..0..0....0..0..0
%e ..0..0..0....0..1..1....0..0..0....1..1..1....0..0..1....1..1..1....0..1..1
%e ..0..1..1....0..1..1....0..0..0....1..1..1....0..1..1....0..0..0....1..1..1
%e ..0..0..1....0..1..1....0..0..1....1..1..1....0..0..1....0..0..0....0..0..1
%Y Cf. A223949.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 29 2013