%I #4 Mar 29 2013 07:49:35
%S 46,698,4498,21334,86439,316136,1065625,3337831,9773219,26903878,
%T 70024867,173255292,409514526,928832014,2029581476,4287303027,
%U 8781854785,17488776976,33939319272,64311697250,119202262153,216450903569
%N Number of nX4 0..2 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing
%C Column 4 of A223933
%H R. H. Hardin, <a href="/A223929/b223929.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/106748928000)*n^16 + (1/13343616000)*n^15 + (1/116756640)*n^14 + (4003/37362124800)*n^13 + (97199/28740096000)*n^12 + (670871/14370048000)*n^11 + (94057/130636800)*n^10 - (113957/261273600)*n^9 + (565001317/5225472000)*n^8 - (887457691/1306368000)*n^7 + (3190047029/359251200)*n^6 - (36838723231/718502400)*n^5 + (4745796217531/15567552000)*n^4 - (170787179737/162162000)*n^3 + (51300697729/21621600)*n^2 - (74839579/180180)*n - 7017 for n>6
%e Some solutions for n=3
%e ..2..2..0..0....1..2..0..0....0..2..2..2....0..1..1..0....1..2..1..0
%e ..0..2..2..1....1..2..2..2....0..0..2..2....0..0..2..1....1..1..2..1
%e ..0..0..2..2....1..2..2..2....0..0..0..2....0..0..0..2....0..1..2..2
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 29 2013
|