login
A223923
Number of 6Xn 0..2 arrays with rows and antidiagonals unimodal and columns nondecreasing
1
28, 784, 12752, 139925, 1147712, 7526024, 41334135, 196691651, 831996762, 3191126598, 11273703656, 37147879480, 115325935123, 340079259419, 958837466287, 2598467396144, 6797368250655, 17222433541791, 42380526618210
OFFSET
1,1
COMMENTS
Row 6 of A223918
LINKS
FORMULA
Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/593480641388544000)*n^23 + (1/11491439984640000)*n^22 + (2153/709596419051520000)*n^21 + (219067/2432902008176640000)*n^20 + (25141/11058645491712000)*n^19 + (7669183/149388719800320000)*n^18 + (2894807/2766457774080000)*n^17 + (345585431/17575143505920000)*n^16 + (19926331/58583811686400)*n^15 + (19845690451/3766102179840000)*n^14 + (29105209667/470762772480000)*n^13 + (9676615094071/17575143505920000)*n^12 + (3447815819587/878757175296000)*n^11 + (1672600520777/75107450880000)*n^10 + (40399178860907/399435079680000)*n^9 + (5902479263543591/16005934264320000)*n^8 + (857508181884829/800296713216000)*n^7 + (1309477651758586831/532197314288640000)*n^6 + (43433412218488139/9855505820160000)*n^5 + (4693314253940149/778066248960000)*n^4 + (1959925243391/320817246750)*n^3 + (12456072565753/2698531355520)*n^2 + (3225389971/1784742960)*n + 1
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..0....0..2..1....0..1..1....0..0..0....0..1..0....0..2..0
..0..1..0....2..1..0....1..2..1....0..1..1....0..1..0....0..1..0....0..2..0
..0..1..2....2..1..0....1..2..1....0..1..1....0..1..0....0..2..2....0..2..0
..0..1..2....2..1..0....1..2..2....0..1..2....0..1..0....0..2..2....0..2..0
..0..2..2....2..1..0....2..2..2....0..1..2....1..1..0....1..2..2....0..2..0
..1..2..2....2..1..0....2..2..2....0..2..2....1..2..1....1..2..2....1..2..2
CROSSREFS
Sequence in context: A208032 A264368 A224266 * A224351 A224193 A224010
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 29 2013
STATUS
approved