login
A223864
T(n,k)=Number of nXk 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing
13
4, 16, 10, 50, 100, 20, 130, 684, 400, 35, 296, 3526, 4884, 1225, 56, 610, 14751, 41682, 24199, 3136, 84, 1163, 52591, 273959, 315124, 93731, 7056, 120, 2083, 165212, 1477240, 3017129, 1771012, 303560, 14400, 165, 3544, 468292, 6818350, 22852913
OFFSET
1,1
COMMENTS
Table starts
...4....16.......50.......130.........296...........610...........1163
..10...100......684......3526.......14751.........52591.........165212
..20...400.....4884.....41682......273959.......1477240........6818350
..35..1225....24199....315124.....3017129......22852913......144081276
..56..3136....93731...1771012....23738426.....243933798.....2030417942
..84..7056...303560...8008548...145947740....1989679315....21476594002
.120.14400...857696..30627033...740441932...13140481520...181330154458
.165.27225..2175884.102479569..3217594840...73068868012..1271807435844
.220.48400..5058530.307435001.12305144319..352040804450..7630189031428
.286.81796.10940664.842078930.42270004211.1502130487437.40055722078772
LINKS
FORMULA
Empirical: columns k=1..7 are polynomials of degree 3*k for n>0,0,0,1,2,4,6
Empirical: rows n=1..7 are polynomials of degree 6*n
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0....0..2..1..1....0..1..3..2....0..2..2..0....0..1..1..3
..0..0..0..1....0..2..3..1....0..2..3..2....1..3..3..2....0..1..3..3
..2..3..2..2....0..2..3..3....1..3..3..3....3..3..3..2....1..3..3..3
CROSSREFS
Column 1 is A000292(n+1)
Column 2 is A001249
Row 1 is A223659
Sequence in context: A346460 A181717 A224173 * A223987 A224123 A273579
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 28 2013
STATUS
approved