login
Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.
1

%I #7 Aug 23 2018 16:52:23

%S 29,239,926,2578,6159,13582,28369,56607,108282,199047,352486,602938,

%T 998945,1607388,2518375,3850945,5759652,8442093,12147444,17186068,

%U 23940259,32876186,44557101,59657875,78980926,103473603,134247090

%N Number of n X 7 0..1 arrays with rows and antidiagonals unimodal and columns nondecreasing.

%C Column 7 of A223838.

%H R. H. Hardin, <a href="/A223837/b223837.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (4/315)*n^7 - (1/45)*n^6 + (28/45)*n^5 + (113/72)*n^4 + (2137/180)*n^3 + (14023/360)*n^2 + (13159/140)*n - 339 for n>4.

%F Conjectures from _Colin Barker_, Aug 23 2018: (Start)

%F G.f.: x*(29 + 7*x - 174*x^2 + 238*x^3 + 109*x^4 - 256*x^5 + 45*x^6 + 111*x^7 - 27*x^8 - 26*x^9 + 6*x^10 + 2*x^11) / (1 - x)^8.

%F a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>12.

%F (End)

%e Some solutions for n=3:

%e ..0..0..0..1..1..1..0....0..0..0..0..0..0..0....0..1..0..0..0..0..0

%e ..0..0..1..1..1..1..0....0..0..1..1..0..0..0....0..1..1..1..0..0..0

%e ..1..1..1..1..1..1..1....0..1..1..1..1..1..1....1..1..1..1..1..1..1

%Y Cf. A223838.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 27 2013