login
T(n,k)=Number of nXk 0..2 arrays with rows and columns unimodal
7

%I #4 Mar 27 2013 16:54:07

%S 3,9,9,22,81,22,46,484,484,46,86,2116,6166,2116,86,148,7396,51136,

%T 51136,7396,148,239,21904,310396,738482,310396,21904,239,367,57121,

%U 1492552,7291180,7291180,1492552,57121,367,541,134689,5995781,54035194,111026387

%N T(n,k)=Number of nXk 0..2 arrays with rows and columns unimodal

%C Table starts

%C ...3......9........22..........46............86.............148

%C ...9.....81.......484........2116..........7396...........21904

%C ..22....484......6166.......51136........310396.........1492552

%C ..46...2116.....51136......738482.......7291180........54035194

%C ..86...7396....310396.....7291180.....111026387......1215505987

%C .148..21904...1492552....54035194....1215505987.....18986502099

%C .239..57121...5995781...320423509...10278415020....222531132820

%C .367.134689..20879061..1590193515...70637615542...2068398813560

%C .541.292681..64727664..6823643014..409495177832..15880238812350

%C .771.594441.182215264.25942390362.2059270878998.103853282918692

%H R. H. Hardin, <a href="/A223831/b223831.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical: columns k=1..7 are polynomials of degree 4*k

%e Some solutions for n=3 k=4

%e ..1..2..0..0....0..0..1..1....0..2..2..0....1..2..1..0....0..1..1..1

%e ..2..2..0..0....1..2..1..1....0..2..2..2....0..2..1..1....1..1..2..2

%e ..0..2..1..0....0..0..1..1....0..0..2..2....0..1..2..2....0..1..2..1

%Y Column 1 is A223718

%Y Column 2 is A223719

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Mar 27 2013