login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX7 0..2 arrays with rows and columns unimodal
1

%I #4 Mar 27 2013 16:53:23

%S 239,57121,5995781,320423509,10278415020,222531132820,3529435151262,

%T 43488595659874,434747752662172,3644070166673656,26274461520805174,

%U 166299611386240948,939231697288055902,4797427977710396544

%N Number of nX7 0..2 arrays with rows and columns unimodal

%C Column 7 of A223831

%H R. H. Hardin, <a href="/A223830/b223830.txt">Table of n, a(n) for n = 1..56</a>

%F Empirical: a(n) = (1296893401129/16938241367317436694528000000)*n^28 + (72703874510633/10888869450418352160768000000)*n^27 + (2880100345513/9489210850037779660800000)*n^26 + (861351630970627/93067260259985915904000000)*n^25 + (864800892388079/4136322678221596262400000)*n^24 + (2565528977681/696064173067468800000)*n^23 + (7905645181522433/151065697813310472192000)*n^22 + (12259447555207963/20064806380162252800000)*n^21 + (7483863495580993/1257623191919001600000)*n^20 + (3594050229364987331/73570956727261593600000)*n^19 + (49600789259036297/145619527485358080000)*n^18 + (86423411955717683177/42593711789467238400000)*n^17 + (1576780142566456509281/152001089131039948800000)*n^16 + (4463809610643909458677/97714985869954252800000)*n^15 + (251513003138559503557/1447629420295618560000)*n^14 + (130199265024314377939/227773859836723200000)*n^13 + (3852138142774912177207/2366317321637068800000)*n^12 + (298748214070779120271/74464531100467200000)*n^11 + (6476410200562687124239/757348083957104640000)*n^10 + (651582375522581245546751/41383663159084646400000)*n^9 + (81109174434756457340257/3242309791666176000000)*n^8 + (42338611909424523333083/1239706685048832000000)*n^7 + (8270024422491842435867/207147570023116800000)*n^6 + (132002526325134509056651/3366148012875648000000)*n^5 + (2188638685226111310011/68070993149263104000)*n^4 + (249241188258236233/11839806322344000)*n^3 + (742497212342827/64314997306560)*n^2 + (84445539769/20078358300)*n + 1

%e Some solutions for n=3

%e ..0..0..0..1..2..1..0....0..0..0..1..1..1..0....0..0..0..0..0..0..2

%e ..0..0..0..1..2..2..0....0..0..0..2..2..1..1....0..0..0..0..1..1..1

%e ..0..0..1..2..2..0..0....0..0..1..1..2..1..0....0..0..0..0..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 27 2013