Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 27 2013 08:15:17
%S 81,6561,151580,1560013,11012718,61333566,288823579,1196519547,
%T 4468789562,15293854291,48524120300,143996244303,402491787780,
%U 1065874328092,2687501352957,6479586585575,14994608609716,33416226803133
%N Number of 4Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal
%C Row 4 of A223789
%H R. H. Hardin, <a href="/A223791/b223791.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (456419/5230697472000)*n^16 + (165527/653837184000)*n^15 + (1160527/37362124800)*n^14 + (4098907/18681062400)*n^13 - (2323961/28740096000)*n^12 + (686821469/7185024000)*n^11 - (1282316951/1828915200)*n^10 + (6465409549/914457600)*n^9 + (69811138547/5225472000)*n^8 - (199799815457/326592000)*n^7 + (10755338490607/1437004800)*n^6 - (18136370082679/359251200)*n^5 + (23466839810116957/108972864000)*n^4 - (2416825957955693/4540536000)*n^3 + (2240986165151/4324320)*n^2 + (7139372965/18018)*n - 659081 for n>8
%e Some solutions for n=3
%e ..1..1..1....0..1..0....1..1..0....0..1..2....0..2..0....0..0..1....1..2..0
%e ..0..2..0....0..2..0....2..2..2....2..1..0....0..1..1....1..0..0....0..1..1
%e ..2..1..0....0..0..2....0..2..2....1..1..0....0..1..2....0..1..0....1..2..0
%e ..1..1..0....0..1..0....1..2..1....1..2..1....2..2..1....0..2..1....1..1..2
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 27 2013