login
A223789
T(n,k)=Number of nXk 0..2 arrays with rows, diagonals and antidiagonals unimodal
12
3, 9, 9, 22, 81, 27, 46, 484, 729, 81, 86, 2116, 8635, 6561, 243, 148, 7396, 62365, 151580, 59049, 729, 239, 21904, 334230, 1560013, 2703137, 531441, 2187, 367, 57121, 1455816, 11012718, 39387861, 48302789, 4782969, 6561, 541, 134689, 5425943
OFFSET
1,1
COMMENTS
Table starts
.....3..........9............22..............46................86
.....9.........81...........484............2116..............7396
....27........729..........8635...........62365............334230
....81.......6561........151580.........1560013..........11012718
...243......59049.......2703137........39387861.........343454446
...729.....531441......48302789......1026135371.......11150023974
..2187....4782969.....862007289.....27088106846......377163884938
..6561...43046721...15379566078....715394830136....12972494260444
.19683..387420489..274427327200..18858304684055...446829906314726
.59049.3486784401.4896915028511.496722962933967.15355124632228358
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: [order 15]
k=4: [order 80]
Empirical: rows n=1..5 are polynomials of order 4*n for k>0,0,1,8,15
EXAMPLE
Some solutions for n=3 k=4
..2..2..2..1....1..2..0..0....1..1..2..2....1..2..1..1....0..0..0..0
..0..2..2..1....0..0..1..0....0..2..2..1....1..1..2..0....0..1..2..0
..2..1..0..0....0..1..0..0....0..2..0..0....2..2..2..2....0..0..1..0
CROSSREFS
Column 1 is A000244
Column 2 is A001019
Row 1 is A223718
Row 2 is A223719
Sequence in context: A223831 A223885 A223892 * A223975 A226852 A207235
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 27 2013
STATUS
approved