login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Petersen graph (8,2) coloring a rectangular array: number of 3Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph
1

%I #4 Mar 25 2013 13:57:59

%S 4096,3888,37008,363600,3788640,40075632,427910688,4599435024,

%T 49661922528,537886587312,5838098127264,63455538372048,

%U 690372511036128,7515830878003440,81857442742673184,891795388496947344

%N Petersen graph (8,2) coloring a rectangular array: number of 3Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph

%C Row 3 of A223692

%H R. H. Hardin, <a href="/A223694/b223694.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 13*a(n-1) +15*a(n-2) -391*a(n-3) -399*a(n-4) +1739*a(n-5) +205*a(n-6) -2013*a(n-7) +580*a(n-8) +396*a(n-9) -144*a(n-10) for n>12

%e Some solutions for n=3

%e .15..7..0...11..3..4....5.13.15....0..1..0....9.11.13...15.13.15....7..6..7

%e .15..7.15...11..3..4....5.13..5....0..1..0...13..5..6....5.13.15....7.15.13

%e .15..7..6...11..3..4....5.13.11....0..1..2....6..5..6...15..9..1....9.11.13

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 25 2013