Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 11 2024 20:03:47
%S 4,16,16,50,256,50,130,3060,3060,130,296,29922,141046,29922,296,610,
%T 252912,5285887,5285887,252912,610,1163,1912914,169756788,761845474,
%U 169756788,1912914,1163,2083,13254601,4836834467,93974096640,93974096640
%N T(n,k) = Number of n X k 0..3 arrays with row sums unimodal and column sums inverted unimodal.
%C Table starts
%C ....4........16............50..............130...............296
%C ...16.......256..........3060............29922............252912
%C ...50......3060........141046..........5285887.........169756788
%C ..130.....29922.......5285887........761845474.......93974096640
%C ..296....252912.....169756788......93974096640....44626165058452
%C ..610...1912914....4836834467...10253839694278.18744540823704239
%C .1163..13254601..125226945708.1013084819998517
%C .2083..85563043.2997363216275
%C .3544.521069404
%C .5776
%H R. H. Hardin, <a href="/A223663/b223663.txt">Table of n, a(n) for n = 1..59</a>
%e Some solutions for n=3 k=4
%e ..2..0..0..2....2..2..0..0....2..2..0..2....0..0..1..2....2..0..0..0
%e ..0..2..3..0....2..2..3..0....2..0..1..0....3..0..1..2....0..2..1..2
%e ..2..0..2..3....3..2..0..0....0..1..0..2....3..2..1..1....1..0..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Mar 25 2013