|
|
A223602
|
|
Petersen graph (8,2) coloring a rectangular array: number of 4Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph
|
|
1
|
|
|
65536, 7424, 176224, 2372080, 43725920, 755683024, 13959069888, 258174966416, 4850832343904, 91505981537072, 1733729781877920, 32909491571349680, 625534833011886880, 11898376530083012208, 226422016143905134464
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row 4 of A223599
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 22*a(n-1) +146*a(n-2) -4241*a(n-3) -7021*a(n-4) +296069*a(n-5) +84524*a(n-6) -10098300*a(n-7) +2841988*a(n-8) +193753372*a(n-9) -109915280*a(n-10) -2243896688*a(n-11) +1623516032*a(n-12) +16219469440*a(n-13) -13091056384*a(n-14) -74162963712*a(n-15) +62602426368*a(n-16) +215343361024*a(n-17) -182965936128*a(n-18) -395412119552*a(n-19) +329698951168*a(n-20) +450438201344*a(n-21) -361766191104*a(n-22) -303199682560*a(n-23) +230835617792*a(n-24) +107843944448*a(n-25) -76487327744*a(n-26) -15032385536*a(n-27) +9663676416*a(n-28) for n>29
|
|
EXAMPLE
|
Some solutions for n=3
..0..8..0....1..2.10....8.14..8....8.14..8....8.10..8....8..0..1....5..4..3
..0..1..0....1..2..3....8..0..8....8.10..8...12.14..8....7..0..8....3..4..3
..0..1..0...10..2..3....7..0..7....8..0..8....6.14..6....7..0..8....5..4..5
..9..1..2....1..2..1....7..0..8....8..0..8...12.14.12....1..0..7....5.13..5
|
|
CROSSREFS
|
Sequence in context: A188096 A188105 A188097 * A223695 A202939 A069277
Adjacent sequences: A223599 A223600 A223601 * A223603 A223604 A223605
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin Mar 23 2013
|
|
STATUS
|
approved
|
|
|
|