login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers n for which f(-n-1) < f(-n) < f(-n+1), where f(m) = floor(cot(Pi/(2m))).
1

%I #22 Jan 04 2014 14:40:06

%S 2,3,4,7,12,15,18,23,26,29,34,37,40,45,48,51,54,59,62,65,70,73,76,81,

%T 84,87,92,95,98,103,106,109,114,117,120,125,128,131,136,139,142,147,

%U 150,153,158,161,164,169,172,175,180,183,186,191,194,197

%N Positive integers n for which f(-n-1) < f(-n) < f(-n+1), where f(m) = floor(cot(Pi/(2m))).

%C Conjecture: A223568(k) = 2*A223577(k)-k+1, k=1,2,....

%F Conjecture: a(n) = a(n-1)+a(n-3)-a(n-4) for n>6. G.f.: x*(2*x^17-2*x^16+2*x^5+4*x^4+x^3+x^2+x+2) / ((x-1)^2*(x^2+x+1)). - _Colin Barker_, Jan 03 2014

%t f[n_] := Floor[Cot[Pi/(2 n)]]; Select[Range[2, 200], f[-# - 1] < f[-#] < f[-# + 1] &] (* _T. D. Noe_, Mar 22 2013 *)

%Y Cf. A024812, A024813, A223577.

%K nonn

%O 1,1

%A _L. Edson Jeffery_, Mar 22 2013