login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..1 arrays with antidiagonals unimodal
1

%I #6 Mar 22 2013 18:18:43

%S 16,256,3136,34496,379456,4174016,45914176,505055936,5555615296,

%T 61111768256,672229450816,7394523958976,81339763548736,

%U 894737399036096,9842111389397056,108263225283367616,1190895478117043776

%N Number of nX4 0..1 arrays with antidiagonals unimodal

%C Column 4 of A223569

%H R. H. Hardin, <a href="/A223565/b223565.txt">Table of n, a(n) for n = 1..210</a>

%F a(n) = product{ (1+(i*(i+1)/2))^2 , i=1..(min(n,4)-1) } * (1+(min(n,4)*(min(n,4)+1)/2))^(max(n,4)-min(n,4)+1)

%F a(n) = 11*a(n-1) for n>3

%e Some solutions for n=4

%e ..0..1..0..0....0..0..0..0....0..1..0..0....1..0..1..1....1..1..1..0

%e ..1..1..1..1....1..0..1..0....0..1..0..1....1..1..0..1....1..1..0..0

%e ..1..1..0..1....1..1..1..0....0..0..1..0....0..0..0..0....1..1..1..1

%e ..1..0..1..0....1..0..1..1....0..1..0..1....0..0..0..0....1..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 22 2013