login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223443
4-level binary fanout graph coloring a rectangular array: number of n X 2 0..14 arrays where 0..14 label nodes of a graph with edges 0,1 1,3 3,5 3,6 1,4 4,7 4,8 0,2 2,9 9,11 9,12 2,10 10,13 10,14 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
28, 104, 408, 1616, 6432, 25664, 102528, 409856, 1638912, 6554624, 26216448, 104861696, 419438592, 1677737984, 6710919168, 26843611136, 107374313472, 429496991744, 1717987442688, 6871948722176, 27487792791552, 109951166971904
OFFSET
1,1
COMMENTS
Column 2 of A223449.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 8*a(n-2) for n>3.
Conjectures from Colin Barker, Aug 20 2018: (Start)
G.f.: 4*x*(7 - 16*x + 2*x^2) / ((1 - 2*x)*(1 - 4*x)).
a(n) = 2^(n-2) * (4+25*2^n) for n>1.
(End)
EXAMPLE
Some solutions for n=3:
.10.13....1..0....9.11....4..7...10..2...12..9....1..3....1..4....3..5....4..1
.13.10....3..1....2..9....8..4...14.10....9.12....3..6....3..1....6..3....1..0
.10.14....5..3....0..2....4..8...10.13....2..9....1..3....1..3....3..1....4..1
CROSSREFS
Cf. A223449.
Sequence in context: A168254 A219380 A263200 * A201469 A010016 A256647
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 20 2013
STATUS
approved