login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223434
Generalized Petersen graph (8,2) coloring a rectangular array: number of n X 2 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
2
48, 256, 1376, 7424, 40160, 217600, 1180256, 6405888, 34782688, 188912640, 1026197344, 5575016704, 30289360608, 164570543616, 894181114976, 4858543170304, 26399224399840, 143442922485760, 779415220762976
OFFSET
1,1
COMMENTS
Column 2 of A223440.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 11*a(n-2) - 16*a(n-3).
Empirical g.f.: 16*x*(3 - 8*x - 9*x^2) / (1 - 8*x + 11*x^2 + 16*x^3). - Colin Barker, Mar 16 2018
EXAMPLE
Some solutions for n=3:
..6..5....8..0....3..4...11.13....7..0...11.13....9..1....1..0....1..9....1..9
.14..6....0..7....2..3...13.15...15..7...13.15....1..2....0..1....2..1....9.11
..8.14....8..0....3..2...15.13....9.15...15..7....2..3....1..2....3..2....1..9
CROSSREFS
Cf. A223440.
Sequence in context: A052683 A206054 A206047 * A235911 A235904 A275406
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 20 2013
STATUS
approved