Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 19 2013 17:12:52
%S 9,24,24,68,144,68,192,912,912,192,544,5808,13232,5808,544,1536,37008,
%T 192752,192752,37008,1536,4352,235824,2812608,6443888,2812608,235824,
%U 4352,12288,1502736,41044048,215773456,215773456,41044048,1502736,12288
%N T(n,k)=3X3 square grid graph coloring a rectangular array: number of nXk 0..8 arrays where 0..8 label nodes of the square grid graph and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
%C Table starts
%C .....9........24............68..............192..................544
%C ....24.......144...........912.............5808................37008
%C ....68.......912.........13232...........192752..............2812608
%C ...192......5808........192752..........6443888............215773456
%C ...544.....37008.......2812608........215773456..........16589428016
%C ..1536....235824......41044048.......7226963248........1275808315376
%C ..4352...1502736.....598980512.....242067684912.......98124582178928
%C .12288...9575856....8741293936....8108163611488.....7547020636487088
%C .34816..61020048..127567402912..271587161033712...580464274863214064
%C .98304.388836912.1861673117136.9096958174072272.44645287470831363696
%H R. H. Hardin, <a href="/A223379/b223379.txt">Table of n, a(n) for n = 1..264</a>
%F Empirical for column k:
%F k=1: a(n) = 8*a(n-2) for n>3
%F k=2: a(n) = 7*a(n-1) -4*a(n-2)
%F k=3: a(n) = 221*a(n-2) -1718*a(n-4) +1872*a(n-6) for n>7
%F k=4: [order 9]
%F k=5: [order 28] for n>29
%F k=6: [order 59]
%e Some solutions for n=3 k=4
%e ..0..1..4..5....5..4..7..6....1..4..5..4....4..7..4..7....2..1..2..1
%e ..1..4..5..4....2..5..8..7....4..1..4..5....3..6..3..6....5..2..5..2
%e ..2..1..2..5....1..4..5..8....7..4..7..4....6..3..4..7....8..5..2..5
%e Vertex neighbors:
%e 0 -> 1 3
%e 1 -> 0 2 4
%e 2 -> 1 5
%e 3 -> 0 4 6
%e 4 -> 3 1 5 7
%e 5 -> 4 2 8
%e 6 -> 3 7
%e 7 -> 6 4 8
%e 8 -> 7 5
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Mar 19 2013