Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 19 2018 16:42:42
%S 15,60,264,1176,5280,23712,106560,478848,2151936,9670656,43459584,
%T 195305472,877694976,3944325120,17725636608,79658287104,357981093888,
%U 1608752431104,7229667803136,32489832185856,146007980507136
%N 5 X 5 X 5 triangular graph coloring a rectangular array: number of n X 1 0..14 arrays where 0..14 label nodes of a graph with edges 0,1 0,2 1,2 1,3 1,4 2,4 3,4 2,5 4,5 3,6 3,7 4,7 6,7 4,8 5,8 7,8 5,9 8,9 6,10 6,11 7,11 10,11 7,12 8,12 11,12 11,12 8,13 9,13 12,13 9,14 13,14 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
%C Column 1 of A223344.
%H R. H. Hardin, <a href="/A223337/b223337.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) + 4*a(n-2) - 8*a(n-3).
%F Empirical g.f.: 3*x*(5 - 12*x^2) / (1 - 4*x - 4*x^2 + 8*x^3). - _Colin Barker_, Aug 19 2018
%e Some solutions for n=3:
%e ..3...11...11....9....4...11....4....5...10....6....8....7....2....8....4....8
%e ..7....7...10....8....7....7....5....8....6....7....4....4....4....9....2...12
%e ..3....8....6....7....3....6....8...12....3....6....7....7....7....5....5...11
%Y Cf. A223344.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 19 2013