login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rolling icosahedron footprints: number of 2 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.
1

%I #9 Jun 29 2023 11:16:29

%S 12,125,1625,21125,274625,3570125,46411625,603351125,7843564625,

%T 101966340125,1325562421625,17232311481125,224020049254625,

%U 2912260640310125,37859388324031625,492172048212411125

%N Rolling icosahedron footprints: number of 2 X n 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal or antidiagonal neighbor moves along an icosahedral edge.

%C Row 2 of A223321.

%H R. H. Hardin, <a href="/A223322/b223322.txt">Table of n, a(n) for n = 1..210</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (13).

%F Empirical: a(n) = 13*a(n-1) for n>2.

%F Conjectures from _Colin Barker_, Aug 19 2018: (Start)

%F G.f.: x*(12 - 31*x) / (1 - 13*x).

%F a(n) = 125*13^(n-2) for n>1.

%F (End)

%e Some solutions for n=3:

%e ..0..7..3....0..2..8....0..2..4....0..5.11....0..6..5....0..1..3....0..7..0

%e ..1..8..4....8..1..2....8..2..1...10..9..4....2..6..2....3.11..3....0..1..7

%e Vertex neighbors:

%e 0 -> 1 2 5 6 7

%e 1 -> 0 2 3 7 8

%e 2 -> 0 1 4 6 8

%e 3 -> 1 7 8 9 11

%e 4 -> 2 6 8 9 10

%e 5 -> 0 6 7 10 11

%e 6 -> 0 2 4 5 10

%e 7 -> 0 1 3 5 11

%e 8 -> 1 2 3 4 9

%e 9 -> 3 4 8 10 11

%e 10 -> 4 5 6 9 11

%e 11 -> 3 5 7 9 10

%Y Cf. A223321.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 19 2013