|
|
A223291
|
|
4-loop graph coloring a rectangular array: number of n X 2 0..8 arrays where 0..8 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 0,5 5,6 6,0 0,7 7,8 8,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
|
|
1
|
|
|
24, 168, 1368, 11304, 93528, 773928, 6404184, 52994088, 438521688, 3628730664, 30027445848, 248474628648, 2056106982744, 17014115072808, 140790393758808, 1165028853392424, 9640517317978968, 79774482741456168, 660127240765231704
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 9*a(n-1) - 6*a(n-2).
G.f.: 24*x*(1 - 2*x) / (1 - 9*x + 6*x^2).
a(n) = (2^(2-n)*((9-sqrt(57))^n*(3+sqrt(57)) + (-3+sqrt(57))*(9+sqrt(57))^n)) / sqrt(57).
(End)
|
|
EXAMPLE
|
Some solutions for n=3:
..2..0....0..3....6..0....4..0....3..0....0..3....0..1....4..0....8..0....0..2
..0..1....3..0....0..3....0..4....0..5....6..0....8..0....0..6....0..3....2..0
..7..0....0..6....8..0....4..3....1..0....0..6....7..8....3..0....8..0....0..6
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|