login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rolling icosahedron face footprints: number of 3 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.
1

%I #9 Aug 18 2018 16:03:31

%S 400,75,849,4995,38457,261819,1881441,13196979,93567177,660226923,

%T 4668616305,32981553891,233097416793,1647108262683,11639737522305,

%U 82252298336787,581246168781033,4107418513432011,29025468445135761

%N Rolling icosahedron face footprints: number of 3 X n 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across an icosahedral edge.

%C Row 3 of A223282.

%H R. H. Hardin, <a href="/A223284/b223284.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) + 18*a(n-2) - 24*a(n-3) for n>4.

%F Empirical g.f.: x*(400 - 1925*x - 6726*x^2 + 9000*x^3) / (1 - 5*x - 18*x^2 + 24*x^3). - _Colin Barker_, Aug 18 2018

%e Some solutions for n=3:

%e 0 2 3 0 1 0 0 5 7 0 5 9 0 1 0 0 1 6 0 5 9

%e 8 2 3 6 1 4 9 5 9 0 5 9 4 1 6 0 1 4 9 5 9

%e 8 2 3 6 1 0 7 5 9 0 5 9 6 1 4 4 1 0 7 5 9

%e Face neighbors:

%e 0 -> 1 2 5

%e 1 -> 0 4 6

%e 2 -> 0 3 8

%e 3 -> 2 4 16

%e 4 -> 3 1 17

%e 5 -> 0 7 9

%e 6 -> 1 7 10

%e 7 -> 6 5 11

%e 8 -> 2 9 13

%e 9 -> 8 5 14

%e 10 -> 6 12 17

%e 11 -> 7 12 14

%e 12 -> 11 10 19

%e 13 -> 8 15 16

%e 14 -> 9 11 15

%e 15 -> 14 13 19

%e 16 -> 3 13 18

%e 17 -> 4 10 18

%e 18 -> 16 17 19

%e 19 -> 15 18 12

%Y Cf. A223282.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 19 2013